Apr 13, 2025
Abstract:This paper introduces a novel framework for designing efficient neural network architectures specifically tailored to tiny machine learning (TinyML) platforms. By leveraging large language models (LLMs) for neural architecture search (NAS), a vision transformer (ViT)-based knowledge distillation (KD) strategy, and an explainability module, the approach strikes an optimal balance between accuracy, computational efficiency, and memory usage. The LLM-guided search explores a hierarchical search space, refining candidate architectures through Pareto optimization based on accuracy, multiply-accumulate operations (MACs), and memory metrics. The best-performing architectures are further fine-tuned using logits-based KD with a pre-trained ViT-B/16 model, which enhances generalization without increasing model size. Evaluated on the CIFAR-100 dataset and deployed on an STM32H7 microcontroller (MCU), the three proposed models, LMaNet-Elite, LMaNet-Core, and QwNet-Core, achieve accuracy scores of 74.50%, 74.20% and 73.00%, respectively. All three models surpass current state-of-the-art (SOTA) models, such as MCUNet-in3/in4 (69.62% / 72.86%) and XiNet (72.27%), while maintaining a low computational cost of less than 100 million MACs and adhering to the stringent 320 KB static random-access memory (SRAM) constraint. These results demonstrate the efficiency and performance of the proposed framework for TinyML platforms, underscoring the potential of combining LLM-driven search, Pareto optimization, KD, and explainability to develop accurate, efficient, and interpretable models. This approach opens new possibilities in NAS, enabling the design of efficient architectures specifically suited for TinyML.
Via
